Gunter, Jason

From:

James, Kevin <kjames@doerun.com>

Sent:

Wednesday, May 13, 2015 4:34 PM

To:

Gunter, Jason

Cc:

Yingling, Mark; Neaville, Chris; Montgomery, Michael; 'brandon.wiles@dnr.mo.gov'; 'Ty Morris

(TMorris@barr.com)'; Seabourne, Rocky

Subject:

Leadwood Progress Report - April

Attachments:

removed.txt; Leadwood_ProgressReport_04-15.pdf; Remediation Air Report - March 2015.pdf

Jason -

Attached is the April Progress Report for the Leadwood Site.

Best regards,

Kevin James

Kevin James

×

Construction Engineering W: 573.626.2096

C: 573.247.6766

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

21.32

Superfund

4.2

Remediation Group

Kevin James Construction Engineering Manager kjames@doerun.com

May 13, 2015

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: The Doe Run Company - Leadwood Mine Tailings Site Monthly Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 50 of the Unilateral Administrative Order (Docket No. CERCLA-07-2006-0272) for the referenced project and on behalf of The Doe Run Company, the progress report for the period April 1, 2015 through April 30, 2015 is enclosed. If you have any questions or comments, please call me at 573-626-2096.

Sincerely,

Kevin James

Construction Engineering Manager

Enclosures

c: Mark Yingling – TDRC (electronic only) Chris Neaville – TDRC (electronic only)

Michael Montgomery – TDRC (electronic only)

Brandon Wiles - MDNR

Ty Morris - Barr Engineering

Leadwood Mine Tailings Site

Leadwood, Missouri

Removal Action - Monthly Progress Report

Period: April 1, 2015 - April 30, 2015

1. Actions Performed or Completed This Period:

a. Work continued on the development of the Post Removal Site Control Plan for the site.

2. Data and Results Received This Period:

- a. During this period, due to a communications error, water samples were not collected.
- b. During this period, the ambient air monitoring samples for March were processed and the Ambient Air Monitoring Report for March 2015 was completed and is attached. A copy of the Ambient Air Monitoring Report for March is attached.

3. Scheduled Activities not Completed This Period:

a. None.

4. Planned Activities for Next Period:

- a. Continue developing the Post Removal Site Control Plan for the site.
- b. Complete monthly water sampling activities as described in the Removal Action Work Plan.
- c. Complete air monitoring activities as described in the Removal Action Work Plan.

5. Changes in Personnel:

a. None.

6. Issues or Problems Arising This Period:

a. None.

7. Resolution of Issues or Problems Arising This Period:

a. None.

Monthly Ambient Air Monitoring Report

The Doe Run Company Old Lead Belt Sites: Federal, Rivermines, National, and Leadwood

March-2015

SUITE 300 1801 PARK 270 DRIVE ST. LOUIS, MO 53146

Federal Site

Sample Results for March-2015

	04 1 //	5 - 116 - 1 - 1 - 1	D' - D'			reatment
	St. Joe (F		Big River#4		Plant TSP Lea	
Sample Date	TSP	Lead	TSP	Lead		Lead
Sample Date	ug/m3	ug/m3 0.007	ug/m3	ug/m3	ug/m3 17	ug/m3
3/2/15	18		15	0.000		0.000
3/3/15	15	0.000	16	0.000	15	0.000
3/4/15	16	0.000	15	0.000	21	0.007
3/5/15	29	0.013	26	0.006	29	0.006
3/6/15	15	0.007	15	0.006	17	0.006
3/9/15	13	0.021	10	0.000	10	0.007
3/10/15	11	0.007	11	0.000	8	0.007
3/11/15	35	0.034	29	0.007	26	0.020
3/12/15	29	0.027	24	0.007	26	0.013
3/13/15	11	0.007	12	0.007	6	0.000
3/16/15	invalid	invalid	77	0.007	60	0.014
3/17/15	29	0.027	25	0.007	23	0.013
3/18/15	19	0.007	15	0.000	6	0.000
3/19/15	13	0.007	11	0.000	7	0.007
3/20/15	16	0.007	14	0.006	16	0.013
3/23/15	invalid	invalid	invalid	invalid	50	0.096
3/24/15	19	0.007	19	0.007	20	0.013
3/25/15	13	0.014	17	0.007	16	0.020
3/26/15	16	0.007	13	0.000	16	0.007
3/27/15	16	0.013	14	0.006	16	0.013
3/30/15	35	0.014	36	0.007	31	0.020
3/31/15	30	0.021	33	0.007	37	0.034
-,,						

Monthly Avg. TSP	20	21	22
Monthly Avg. Pb	0.012	0.004	0.014
Feb-15	0.009	0.006	0.011
Jan-15	0.015	0.008	0.025
Rolling 3-Month	0.012	0.006	0.017

Three month rolling average must be less than 0.15 ug/m3

NOTES:

St. Joe 3/16, 3/23: <23hr run time Big River 3/23: <23hr run time

	Big River QA			
	TSP	Lead		
Sample Date	ug/m3	ug/m3		
3/3/15	14	0.000		
3/5/15	27	0.006		
3/10/15	invalid	invalid		
3/12/15	24	0.007		
3/17/15	22	0.007		
3/19/15	11	0.007		
3/24/15	20	0.007		
3/26/15	12	0.000		
3/31/15	33	0.007		

Rivermines

Sample Results for March-2015

	Big Ri	ver #4	Rivermine	es South #1		s North #2		es East #3
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
3/2/15	15	0.000	20	#VALUE!	20	0.007	17	0.000
3/3/15	16	0.000	16	#VALUE!	16	0.000	15	0.000
3/4/15	15	0.000	15	0.006	18	0.000	21	0.007
3/5/15	26	0.006	30	0.006	32	0.020	29	0.006
3/6/15	15	0.006	invalid	invalid	17	0.026	17	0.006
3/9/15	10	0.000	16	0.014	8	0.007	10	0.007
3/10/15	11	0.000	invalid	invalid	7	0.000	8	0.007
3/11/15	29	0.007	30	0.026	33	0.014	26	0.020
3/12/15	24	0.007	32	0.038	38	0.014	26	0.013
3/13/15	12	0.007	invalid	invalid	5	0.000	6	0.000
3/16/15	77	0.007	4	#VALUE!	91	0.028	60	0.014
3/17/15	25	0.007	21	0.013	28	0.007	23	0.013
3/18/15	15	0.000	14	0.007	19	0.007	6	0.000
3/19/15	11	0.000	14	0.065	invalid	invalid	7	0.007
3/20/15	14	0.006	18	0.013	17	0.007	16	0.013
3/23/15	invalid	invalid	42	0.020	64	0.048	50	0.096
3/24/15	19	0.007	15	0.007	20	0.007	20	0.013
3/25/15	17	0.007	15	0.013	18	0.007	16	0.020
3/26/15	13	0.000	16	0.047	16	0.000	16	0.007
3/27/15	14	0.006	invalid	invalid	18	0.040	16	0.013
3/30/15	36	0.007	29	0.020	37	0.021	31	0.020
3/31/15	33	0.007	43	0.046	40	0.014	37	0.034

Monthly Avg. TSP	21	22	27	22
Monthly Avg. Pb	0.004	#VALUE!	0.013	0.014
Feb-15	0.006	0.013	0.016	0.011
Jan-15	0.008	0.030	0.025	0.025
Rolling 3-Month	0.006	#VALUE!	0.018	0.017

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Big River 3/23: <23hr run time Rivermines South 3/6: <23hr run time, 3/10, 3/13, 3/27: >25hr run time

Rivermines North 3/19: <23hr run time

	Big Ri	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
3/3/15	14	0.000
3/5/15	27	0.006
3/10/15	invalid	invalid
3/12/15	24	0.007
3/17/15	22	0.007
3/19/15	11	0.007
3/24/15	20	0.007
3/26/15	20	0.007
3/31/15	20	0.007

National Site

Sample Results for March-2015

	Big Pi	ver #4	Oza	-k #1	Soccer	Park #2		reatment
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
3/2/15	15	0.000	19	0.000	27	0.032	17	0.000
3/3/15	16	0.000	18	0.000	15	0.000	15	0.000
3/4/15	15	0.000	17	0.000	19	0.000	21	0.007
3/5/15	26	0.006	39	0.013	56	0.096	29	0.006
3/6/15	15	0.006	29	0.013	45	0.071	17	0.006
3/9/15	10	0.000	15	0.007	25	0.055	10	0.007
3/10/15	11	0.000	14	0.007	10	0.007	8	0.007
3/11/15	29	0.007	38	0.020	45	0.067	26	0.020
3/12/15	24	0.007	20	0.007	28	0.027	26	0.013
3/13/15	12	0.007	3	0.000	11	0.007	6	0.000
3/16/15	77	0.007	invalid	invalid	invalid	invalid	60	0.014
3/17/15	25	0.007	18	0.007	25	0.020	23	0.013
3/18/15	15	0.000	5	0.000	18	0.007	6	0.000
3/19/15	11	0.000	10	0.000	14	0.007	7	0.007
3/20/15	14	0.006	22	0.013	27	0.020	16	0.013
3/23/15	invalid	invalid	44	0.007	46	0.028	50	0.096
3/24/15	19	0.007	18	0.007	19	0.007	20	0.013
3/25/15	17	0.007	9	0.007	13	0.007	16	0.020
3/26/15	13	0.000	18	0.007	18	0.014	16	0.007
3/27/15	14	0.006	18	0.007	16	0.013	16	0.013
3/30/15	36	0.007	36	0.014	37	0.021	31	0.020
3/31/15	33	0.007	36	0.014	35	0.028	37	0.034

Monthly Avg. TSP	21	21	26	22
Monthly Avg. Pb	0.004	0.007	0.025	0.014
Feb-15	0.006	0.006	0.019	0.011
Jan-15	0.008	0.009	0.016	0.025
Rolling 3-Month	0.006	0.008	0.020	0.017

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Big River 3/23: <23hr run time Ozark 3/16: <23hr run time Soccer Park 3/16: <23hr run time

	Big Ri	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
3/3/15	14	0.000
3/5/15	27	0.006
3/10/15	invalid	invalid
3/12/15	24	0.007
3/17/15	22	0.007
3/19/15	11	0.007
3/24/15	20	0.007
3/26/15	20	0.007
3/31/15	20	0.007

Leadwood

Sample Results for March-2015

		ver #4		South #1		d East #2		North #3
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
3/2/15	15	0.000	28	0.019	24	0.006	17	0.000
3/3/15	16	0.000	17	0.000	16	0.000	13	0.000
3/4/15	15	0.000	. 16	0.000	15	0.000	12	0.000
3/5/15	26	0.006	39	0.050	35	0.006	28	0.000
3/6/15	15	0.006	20	0.006	17	0.006	12	0.007
3/9/15	10	0.000	12	0.013	18	0.013	9	0.000
3/10/15	11	0.000	11	0.013	4	0.000	7	0.000
3/11/15	29	0.007	35	0.060	43	0.027	25	0.007
3/12/15	24	0.007	32	0.039	44	0.026	27	0.007
3/13/15	12	0.007	7	0.007	5	0.007	4	0.007
3/16/15	77	0.007	76	0.020	58	0.007	84	0.007
3/17/15	25	0.007	37	0.052	50	0.033	29	0.007
3/18/15	15	0.000	15	0.006	24	0.013	14	0.000
3/19/15	11	0.000	16	0.013	16	0.019	12	0.007
3/20/15	14	0.006	22	0.013	19	0.007	21	0.007
3/23/15	invalid	invalid	50	0.020	47	0.014	61	0.007
3/24/15	19	0.007	24	0.006	20	0.006	22	0.007
3/25/15	17	0.007	18	0.013	17	0.007	16	0.007
3/26/15	13	0.000	16	0.014	18	0.007	18	0.007
3/27/15	14	0.006	20	0.026	16	0.013	16	0.013
3/30/15	36	0.007	invalid	invalid	34	0.013	35	0.007
3/31/15	33	0.007	74	0.027	55	0.053	37	0.007

Monthly Avg. TSP	21	28	27	24
Monthly Avg. Pb	0.004	0.020	0.013	0.005
Feb-15	0.006	0.014	0.006	0.003
Jan-15	0.008	0.011	0.006	0.005
Rolling 3-Month	0.006	0.015	0.008	0.004

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Big River 3/23: <23hr run time Leadwood South 3/30: <23hr tun time

	Big Riv	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
3/3/15	14	0.000
3/5/15	27	0.006
3/10/15	invalid	invalid
3/12/15	24	0.007
3/17/15	22	0.007
3/19/15	11	0.007
3/24/15	20	0.007
3/26/15	20	0.007
3/31/15	20	0.007

Federal Site

Sample Results for March-2015

	St. Joe (Ballfields)	Big River#4	Water Treatment
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
3/1/15	3	109	11
3/4/15	13	13	6
3/7/15	10	13	15
3/10/15	12	4	11
3/13/15	12	11	10
3/16/15	29	29	24
3/19/15	14	12	10
3/22/15	27	29	22
3/25/15	16	13	15
3/28/15	12	12	10
3/31/15	54	24	21

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	18	25	14

NOTES:

	Big River QA
Sample Date	PM10 (ug/m3)
3/1/15	11
3/4/15	#VALUE!
3/7/15	14
3/13/15	10
3/19/15	14
3/25/15	11
3/31/15	20

Rivermines

Sample Results for March-2015

Sample Date	Big River #4 PM10 (ug/m3)	Rivermines South #1 PM10 (ug/m3)	Rivermines North #2 PM10 (ug/m3)	Rivermines East #3 PM10 (ug/m3)
3/1/15	109	13	8	11
3/4/15	13	8	13	6
3/7/15	13	-1	4	15
3/10/15	4	9	13	11
3/13/15	11	12	11	10
3/16/15	29	22	31	24
3/19/15	12	10	11	10
3/22/15	29	26	invalid	22
3/25/15	13	10	invalid	15
3/28/15	12	10	6	10
3/31/15	24	32	23	21

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	25	14	13	14

NOTES:

Rivermines North 3/22: >25hr run time, 3/25: <23hr run time

	Big River QA
Sample Date	PM10 (ug/m3)
3/1/15	11
3/4/15	#VALUE!
3/7/15	14
3/13/15	10
3/19/15	14
3/25/15	11
3/31/15	20

National Site

Sample Results for March-2015

Cample Date	Big River #4	Ozark #1	Soccer Park #2	Water Treatment PM10 (ug/m3)
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)	PW 10 (ug/1113)
3/1/15	109	10	10	11
3/4/15	13	9	10	6
3/7/15	13	20	19	15
3/10/15	4	8	10	11
3/13/15	11	11	10	10
3/16/15	29	21	21	24
3/19/15	12	13	12	10
3/22/15	29	28	25	22
3/25/15	13	16	13	15
3/28/15	12	15	8	10
3/31/15	24	20	24	21

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	25	16	15	14

NOTES:

	Big River QA
Sample Date	PM10 (ug/m3)
3/1/15	11
3/4/15	#VALUE!
3/7/15	14
3/13/15	10
3/19/15	14
3/25/15	11
3/31/15	20

Leadwood

Sample Results for March-2015

4	Big River #4	Leadwood South #1	Leadwood East #2	Leadwood North #3
Sample Date	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
3/1/15	109	9	7	11
3/4/15	13	11	15	9
3/7/15	13	13	12	10
3/10/15	4	7	7	10
3/13/15	11	10	8	8
3/16/15	29	18	30	23
3/19/15	12	13	15	11
3/22/15	29	invalid	37	25
3/25/15	13	invalid	19	14
3/28/15	12	13	13	14
3/31/15	24	21	26	18

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	25	13	17	14

NOTES:

Leadwood South 3/22: >25hr run time, 3/25: <23hr run time

	Big River QA
Sample Date	PM10 (ug/m3)
3/1/15	11
3/4/15	#VALUE!
3/7/15	14
3/13/15	10
3/19/15	14
3/25/15	11
3/31/15	20

Meterological Data - Old Lead Belt March-2015

Date Date	Wind Speed (MPH)	Wind Direction	Sigma-Theta	Temperature (C)	Air Pressure (mmHg)	Rain (Inches)	Power Supply (Volts)
01-Mar-15	3.0	317	21.30	-1.0	755	0.24	13.83
02-Mar-15	3.3	103	23.13	-2.6	756	0.13	13.79
03-Mar-15	5.5	220	22.09	5.5	743	0.10	13.73
04-Mar-15	7.4	356	17.58	-3.5	750	0.25	13.81
05-Mar-15	4.8	352	20.65	-5.7	757	0.05	13.84
06-Mar-15	5.3	210	19.82	-2.4	756	0.00	13.82
07-Mar-15	5.6	231	19.92	9.0	750	0.00	13.59
08-Mar-15	3.3	200	24.74	7.6	749	0.00	13.60
09-Mar-15	3.3	171	24.39	7.0	748	0.08	13.58
10-Mar-15	2.5	343	19.41	7.8	745	0.41	13.57
11-Mar-15	2.4	200	32.09	10.3	751	0.01	13.49
12-Mar-15	3.1	83	23.00	10.7	752	0.03	13.52
13-Mar-15	2.3	21	21.75	9.9	746	1.22	13.50
14-Mar-15	3.9	328	19.32	10.9	748	0.03	13.48
15-Mar-15	3.3	228	29.22	11.5	751	0.00	13.45
16-Mar-15	4.7	219	20.65	15.9	746	0.00	13.40
17-Mar-15	6.6	8	17.24	10.1	750	0.00	13.47
18-Mar-15	3.8	70	23.41	4.6	750	0.03	13.61
19-Mar-15	2.7	70	26.53	6.2	747	0.02	13.60
20-Mar-15	3.3	270	25.52	8.0	748	0.03	13.53
21-Mar-15	3.0	4	25.76	13.5	748	0.00	13.44
22-Mar-15	3.1	79	23.38	12.9	746	0.00	13.42
23-Mar-15	4.8	291	22.31	12.5	746	0.00	13.43
24-Mar-15	4.3	70	33.40	5.0	745	0.17	13.60
25-Mar-15	3.8	9	30.60	13.0	744	0.73	13.44
26-Mar-15	6.7	331	17.74	5.3	746	0.23	13.55
27-Mar-15	5.1	328	20.73	1.5	748	0.00	13.66
28-Mar-15	3.1	113	33.85	2.6	751	0.00	13.62
29-Mar-15	7.0	201	20.36	8.4	747	0.00	13.55
30-Mar-15	3.6	212	28.76	12.6	747	0.00	13.45
31-Mar-15	4.2	309	20.78	15.7	744	0.00	13.38

March 2, 2015

Mr. Greg Henson Chemist The Doe Run Company 881 Main Street Herculaneum, Missouri 63048

RE: 1st Quarter 2015 Lead/PM10 Samplers and Meteorological System Performance Audit Report.

Dear Mr. Henson,

Please find enclosed the worksheets detailing the Lead/PM10 sampler's one-point flow verifications and meteorological sensors accuracy checks that were recently performed on the Doe Run Park Hills Monitoring Network. A copy of the current certifications for the audit devices that were used has also been enclosed.

All of the verifications and checks were found to be within expected guidelines.

After reviewing the enclosed information, please feel free to call with any comments or questions. Thank you for your business.

Sincerely,

John A. Kunkel

Inquest Environmental, Inc.

PM10 Sampler Verifications

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor _	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882		_	
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (Mill St.)	Intercept (Qa) _	-0.00876			
Sampler	#2 PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P1018	Station Pressure	30.04	"Hg	763.0	mmHg

	Flow Rate Audit								
Transfer Orifice		·	Sam	npler		Flow Rate			
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.057	23.80	44.45	0.942	1.127	6.62	± 7%		

	Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.70	44.26	0.942	1.127	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor_	John Kunk	el		,
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station _	Leadwood (School)	Intercept (Qa)	-0.00876			
Sampler	#3 PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P6071	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit								
Transfe	r Orifice	1	Sam	pler		Flow Rate		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range	
3.30	1.073	23.10	43.14	0.943	1.138	6.06	± 7%	

	Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.00	42.96	0.944	1.139	1.070	-5.31	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	_ January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (South)	Intercept (Qa)	-0.00876			•
Sampler	#1 PM10	Temperature	11.0	_°C	284.2	°K
Controller	P1500	Station Pressure	30.03	"Hg	762.8	mmHg

	Flow Rate Audit								
Transfe	Transfer Orifice		Sampler			Flow Rate			
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.057	24.00	44.82	0.941	1.125	6.43	± 7%		

	Sampler Operating Flow Rate							
ManometerPressurePress. RatioFlow RateCorrectedDesign %A"H₂O(Pf)(Po/Pa)m³/minFlow RateDifference								
23.80	44.45	0.942	1.126	1.054	-6.73	± 10%		

Calculations:

Flow

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	e <u>l</u>		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River	Intercept (Qa)	-0.00876			
Sampler	#4 Primary PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P2952	Station Pressure	30.05	_"Hg	763.3	mmHg

	Flow Rate Audit								
Transfe	r Orifice		San	npler		Flow Rate	A		
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.057	23.90	44.64	0.942	1.113	5.30	± 7%		

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range	
23.60	44.08	0.942	1.113	1.054	-6.73	± 10%	

Calculations:

Pressure mmHg (Pf) -("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River	Intercept (Qa)	-0.00876			
Sampler	#4 QA PM10	Temperature	11.0	_°C	284.2	°K
Controller	P1019	Station Pressure	30.05	_"Hg	763.3	mmHg

	Flow Rate Audit								
Transfe	Transfer Orifice		Sampler			Flow Rate			
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.30	1.073	24.40	45.57	0.940	1.124	4.75	± 7%		

	Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
24.50	45.76	0.940	1.124	1.071	-5.22	± 10%			

Calculations:

Flow

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor_	John Kunk	el		
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station_	Hanley Park/Crane St.	Intercept (Qa)	-0.00876			
Sampler_	#2 PM10	Temperature _	10.0	_°C	283.2	°K
Flow Controller	P2949	Station Pressure	30.04	"Hg	763.0	mmHg

· · · · · · · · · · · · · · · · · · ·	Flow Rate Audit								
Transfe	r Orifice		Sampler Flow Rate						
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.20	43.33	0.943	1.109	5.12	± 7%		

	Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.10	43.14	0.943	1.109	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor _	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	St Joe Park	Intercept (Qa)	-0.00876			
Sampler	#4 PM10	Temperature	10.0	_°C	283.2	°K
Flow Controller	P4353	Station Pressure	30.03	"Hg	762.8	mmHg

			Flow Ra	te Audit				
Transfer Orifice			Sampler			Flow Rate		
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range	
3.10	1.039	23.50	43.89	0.942	1.102	6.06	± 7%	

	Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.60	44.08	0.942	1.102	1.035	-8.41	± 10%			

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Wtr Plnt)	Intercept (Qa)	-0.00876			
Sampler	#3 PM10	Temperature	10.0	°C	283.2	°K
Flow Controller	P2951	Station Pressure	30.04	_ "Hg	763.0	mmHg

	Flow Rate Audit								
Transfe	Transfer Orifice		Sampler Flor		Sam		Flow Rate		
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.10	43.14	0.943	1.116	5.78	± 7%		

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range	
23.30	43.52	0.943	1.116	1.051	-6.99	± 10%	

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor	John Kunke	John Kunkel		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Quarry)	Intercept (Qa)	-0.00876			
Sampler_	#1 PM10	Temperature	10.0	_°C	283.2 °	K
Flow Controller	P4601	Station Pressure	30.04	"Hg	763.0 n	nmHg

	Flow Rate Audit								
Transfer Orifice			Sampler			Flow Rate			
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.20	43.33	0.943	1.088	3.13	± 7%		

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range	
23.20	43.33	0.943	1.088	1.054	-6.73	± 10%	

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			•
Station	Rivermines (Above Quarry)	Intercept (Qa)	-0.00876			
Sampler	#2 PM10	Temperature	10.0	_°C	283.2	°K
Flow Controller	P4507	Station Pressure	30.04	"Hg	763.0	mmHg

	Flow Rate Audit							
Transfe	r Orifice	I	San	npler		Flow Rate		
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range	
3.20	1.055	23.30	43.52	0.943	1.108	5.02	± 7%	

	Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.40	43.70	0.943	1.108	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunke	<u> </u>		
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Ozark Insul. (National)	Intercept (Qa)	-0.00876			
Sampler	#1 PM10	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2950	Station Pressure	30.04	"Hg	763.0	mmHg

	Flow Rate Audit								
Transfe	r Orifice	rifice		Sampler		Flow Rate	A 1.1.1.		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.30	43.52	0.943	1.112	5.40	± 7%		

	Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.20	43.33	0.943	1.112	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

Lead/TSP Sampler Verifications

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor_	John Kunkel			
Operator	The Doe Run Company	Transfer Orifice	1882		.,	
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River Primary	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P4557	Station Pressure	30.03	"Hg	762.8	mmHg

	Flow Rate Audit									
Transfe	r Orifice		San	npler		0.1:1	A t-1-			
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range			
3.80	1.149	23.80	44.47	0.942	1.205	4.87	± 7%			

Sampler Operating Flow Rate							
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
24.10	45.03	0.941	1.204	1.145	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River QA	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	_°C	283.2 °	K
Flow Controller	P4558	Station Pressure	30.03	_"Hg	762.8 n	nmHg

			Flow Ra	ite Audit				
Transfe	r Orifice		San	npler	· · ·		A 1.1	
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.80	1.149	23.50	43.91	0.942	1.201	4.53	± 7%	

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.60	44.09	0.942	1.201	1.147	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood Mill St.	Intercept (Qa)	-0.00876			
Sampler	#2 TSP	Temperature	11.0	_°C	284.2	°K
Flow Controller	P4476	Station Pressure	30.04	"Hg	763.0	mmHg

			Flow Ra	ate Audit				
Transfe	r Orifice		San	npler		0 (1)		
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.70	1.136	23.10	43.16	0.943	1.196	5.28	± 7%	

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.10	43.16	0.943	1.196	1.133	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator _	The Doe Run Company	Transfer Orifice	1882			
Location _	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood School	Intercept (Qa)	-0.00876			
Sampler	#3 TSP	Temperature	11.0	_°C	284.2	°K
Flow Controller	P6793	Station Pressure	30.04	"Hg	763.0	mmHg

	÷.		Flow Ra	ate Audit			
Transfe	r Orifice	Sam		npler		6-171	
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.136	23.60	44.09	0.942	1.192	4.93	± 7%

Sampler Operating Flow Rate							
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
23.50	43.91	0.942	1.192	1.133	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor _	John Kunk	John Kunkel		_
Operator _	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094	· ·		_
Station	Leadwood South	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	11.0	_°C	284.2	°K
Flow Controller	P4559	Station Pressure	30.04	"Hg	763.0	mmHg

			Flow Ra	te Audit				
Transfe	r Orifice	Sampler						
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.70	1.136	23.70	44.28	0.942	1.211	6.60	± 7%	

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.70	44.28	0.942	1.211	1.131	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	St Joe Park	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P6792	Station Pressure	30.03	"Hg	762.8	mmHg

	Flow Rate Audit								
Transfe	r Orifice		San	npler					
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range		
3.70	1.134	23.20	43.35	0.943	1.198	5.64	± 7%		

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.30	43.53	0.943	1.198	1.130	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date_	January 20, 2015	Auditor _	John Kunk	el .		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Hanley Park (National)	Intercept (Qa) _	-0.00876			
Sampler	#2 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P4474	Station Pressure	30.04	"Hg	763.0	mmHg

	Flow Rate Audit								
Transfe	r Orifice		San	npler		Calibration Error %			
Manometer "H₂O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min		Acceptable Range		
3.60	1.119	23.40	43.72	0.943	1.189	6.26	± 7%		

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.60	44.09	0.942	1.187	1.113	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			-
Location	Park Hills Network	Slope (Qa)	1.04094			•
Station	Rivermines (Water Plant)	Intercept (Qa)	-0.00876			-
Sampler	TSP	Temperature	10.0	_°C _	283.2	°K
Flow Controller	P4475	Station Pressure	30.04	_"Hg	763.0	mmHg

	Flow Rate Audit								
Transfe	r Orifice		San	npler		6 427			
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range		
3.70	1.134	23.20	43.35	0.943	1.195	5.38	± 7%		

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.20	43.35	0.943	1.195	1.131	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator_	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station_	Rivermines (Quarry)	Intercept (Qa)	-0.00876			
Sampler_	#1 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2940	Station Pressure	30.04	_ "Hg	763.0	mmHg

	Flow Rate Audit									
Transfe	r Orifice		Sam	npler						
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range			
3.60	1.119	23.90	44.65	0.941	1.197	6.97	± 7%			

Sampler Operating Flow Rate					
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range
23.90	44.65	0.941	1.197	1.114	1.10 - 1.70

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

Lead Sampler Audit Volumetric Flow Control

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882	<u>,, </u>		-
Location_	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Above Quarry)	Intercept (Qa)	-0.00876			•
Sampler	#2 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2941	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit								
Transfe	r Orifice		San	npler				
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.70	1.134	23.70	44.28	0.942	1.200	5.82	± 7%	

Sampler Operating Flow Rate						
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range	
23.60	44.09	0.942	1.200	1.130	1.10 - 1.70	

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Calibration Error)/100)

Lead Sampler Audit Volumetric Flow Control

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Ozark Insul (National)	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2939	Station Pressure	30.04	_"Hg	763.0	mmHg

Flow Rate Audit							
Transfe	r Orifice		Sam	npler		6.13	
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.80	1.149	23.00	42.97	0.944	1.201	4.53	± 7%

Sampler Operating Flow Rate						
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range	
22.90	42.78	0.944	1.204	1.150	1.10 - 1.70	

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Calibration Error)/100)

Calibration Orifice Certification Worksheet

TISCH ENVIRONMENTAL, INC. 145 South MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

Date - Ja Operator		Rootsmeter Orifice I.I	-,	833620 1882	Ta (K) ~ Pa (mm) -	292 765.81
PLATE OR VDC #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2C (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.3360 1.0560 0.9570 0.8870 0.6670	4.3 6.8 8.2 9.5 16.5	1.50 2.50 3.00 3.50 6.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0225 1.0191 1.0173 1.0155 1.0061	0.7654 0.9651 1.0630 1.1449 1.5084	1.2420 1.6034 1.7564 1.8972 2.4840		0.9943 0.9910 0.9892 0.9875 0.9784	0.7443 0.9385 1.0337 1.1133 1.4668	0.7563 0.9763 1.0695 1.1552 1.5125
Ostd slop intercept coefficie	(b) =	1.66236 -0.01438 0.99927		Qa slope intercept coefficie	c (b) =	1.04094 -0.00876 0.99927
y axis =	SQRT [H2O (Pa/760)(298/	 Га)]	y axis =	SQRT [H20 (7	Ca/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Meteorological Sensor's Accuracy Checks

Wind Direction Sensor Performance Audit

Operator The Doe Run Co
Location Big River

Station Name Meteorological System
Technician J Kunkel / M Kunkel

Sensor Mfg RM Young
Sensor Model Wind Monitor AQ
Serial Number 128618
Sensor Height 10.0 Meters

Date	01/15/2015
Start Time	07:45
Stop Time	08:45

Station Declination	1.1	Deg
Measured Angle	180.0	Deg
Corrected Angle	181.1	Deg
Alignment Error	-1.1	Deg

Vane	Data	Res	ults
Angle	Logger	Difference	Total Error
Degrees	Degrees	± 3 Deg Limit	± 5 Deg Limit
0/360	0.9	0.9	-0.2
90	90.4	0.4	-0.7
180	180.5	0.5	-0.6
270	271.4	1.4	0.3

Average Difference (Degrees)	0.8
Average Total Error (Degrees)	-0.3

Audit Device	Wind Vane Alignment	Direction
Туре	Pocket Transit	Vane Angle Fixture
Mfg.	Brunton	R.M. Young
Model	5008	18212
Serial No.	5080304492	None

Comments: Wind direction was verified by determining the orientation of the sensor in respect to True North. This was measured using a tri-pod mounted transit aligned along the length of the sensor while locked from rotating.

A magnetic declination of 1.1 degrees was used to determine True North. The linearity of the sensor was determined by aligning the sensor to an indexed test fixture provided by the manufacturer. The four cardinal directions were verified using the fixture. No adjustments were made to the sensor.

Wind Speed Sensor Performance Audit

Operator The Doe Run Co
Location Big River
Station Name Meteorological System
Auditor(s) J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Limit

1.63

2.09

Sensor Mfg RM Young
Sensor Model Wind Monitor AQ
Serial Number 128618
Sensor Height 10.0 Meters

Audit Standard

5400

7200

M/S Difference M/S RPM M/S 0.00 0.00 0.00 0.25 Zero 0.25 1.53 -0.01300 1.54 600 3.07 3.07 0.00 0.25 6.14 0.00 0.56 1200 6.14 0.71 9.22 9.22 0.00 1800 1.17 18.44 0.01 3600 18.43

27.63

36.85

-0.02

-0.01

0.00

DAS Response

 $\pm (0.25 \text{ m/s} + 5\%)$

Audit Device	Anemometer Drive	
Туре	Variable Speed	
Mfg.	R.M. Young	
Model	18801	
Serial No.	CAO1631	

27.65

36.86

Average

Comments: Wind speed was verified using a variable speed anemometer drive. The propellor was removed from the sensor and the drive was connected using a flexible connector. The sensor was then rotated in the appropriate direction at several different speeds. Sensor responses were taken from

the data logger. No adjustments were made to the sensor.

Temperature Sensor Performance Audit

Operator	The Doe Run Co	Date	01/15/20
	Big River	Start Time	07:45
_	Meteorological System	Stop Time	08:45
Technician	J Kunkel / M Kunkel		

Sensor Information

Sensor Mfg	Climatronics	
Sensor Model	NA	
Serial Number	NA	
Sensor Height	2 meters	

Audit Device	Sensor	
°C	Data Logger °C	Difference °C
-0.8	-0.9	-0.1
29.1	29.0	-0.1
55.9	55.7	-0.2
	Average	-0.1

Note: The limit for each point is +/- 0.5 °C

Audit Device			
Type Digital Thermometer			
Mfg.	Control Company		
Model 15-077-8			
Serial No.	221381404		

Comments: The temperature is verified by co-locating the sensor with a certified digital thermometer. The verification is conducted at three levels using two water baths (iced and hot water) and the ambient temperature.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital thermometer. No adjustments were made to the sensor.

Barometric Pressure Sensor Performance Audit

Operator The Doe Run Co
Location Big River

Station Name Meteorological System
Technician J Kunkel / M Kunkel

 Date
 01/15/2015

 Start Time
 07:45

 Stop Time
 08:45

 Sensor Mfg
 Setra

 Sensor Model
 276

 Serial Number
 2626447

	Data Logger Response	
Audit Device mm HG	BP mm HG	Difference mm HG
747.10	750.40	3.30

Note: Limit is +/- 7.5 mm HG.

Audit Device		
Туре	Digital Barometer	
Mfg.	AIR	
Model	AIR-HB-1A	
Serial No.	6G3745	

Comments: The barometric pressure is verified by co-locating the sensor with a certified digital barometer. The verification was conducted at one level after allowing the sensor and calibration device ample time to stabilize.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital barometer. No adjustments were made to the sensor.

Precipitation Gauge Performance Audit

Operator The Doe Run Co Big River Location Station Name Meteorological System Technician J Kunkel / M Kunkel

Date 01/15/2015 Start Time 07:45 Stop Time 08:45

Sensor Mfg Texas Electronics Sensor Model TR5251 Serial Number 36611-805 Diameter (inches) 6.00

	Data Logger Response	
Audit Device Known Tips	Gauge Tips	Difference %
96.00	93.00	-3.13

Note: Limit is +/- 10%.

Audit Device			
Туре	Graduated Beaker		
Mfg.	Texas Instruments		
Model FC-525			
Serial No.	NA		

Comments: The precipitation gauge output was verified using a field calibration kit supplied by the manufacturer. The kit consists of a graduated beaker and a calibration funnel using a precision orifice at the water outlet. Water was measured in the beaker and poured into the funnel while mounted on the gauge. The amount of precipitation recorded by the data logger was then compared to the known amount of water passing through the funnel. 100 tips equals one inch of rainfall. The gauge was cleaned and no adjustments were made.

Meteorological Audit Devices Certifications

BRUNTON OUTDOOR GROUP

CERTIFICATE OF CALIBRATION

Equipment Ov	vner
Name:	Inquest Environmental Mitch Kunkel 3609 Majeve Court, Ste E
Address:	3609 Mojeve Court, Ste E
-	Columbia MC 65207
C-1:h+:	and the state of t
	ceable to the National institute of Standards and Technology in accordance with MIL- as been accomplish on the instrument listed below by comparison with standards
	the Brunton Outdoor Group. The accuracy and stability of all standards maintained b
	utdoor Group are traceable to national standards maintained by the National Institute
	nd Technology in Washington, D.C. and Boulder, CO. Completed record of all work
	naintained by the Brunton Outdoor Group and is available for inspection upon reques
presented to the	termination by the branch outdoor croup and to a familiary or inspection approximation
This unit has be	een calibrated to Lietz TM10E serial number 30937 traceable to N.B.S. Number
738227675 thi	s <u>Audy</u> Day 30 20 14.
	•
Description	Pocket Transit
	A-1110 - 220
Purchase Order	256430329
Order Number	50-070367
Order Hamber	
Model Number	F-3008
Serial Number	5047304492
	/ /
	7/30/14
	ate 7/30/15
Recalibration Da	ite
Signed <u>Ed</u>	i Myselly 3/30/14
Quality Control C	Coordinator

CALIBRATION PROCEDURE 18801/18810 ANEMOMETER DRIVE

DWG: CP18801(A)

REV: C101107 BY: TJT CHK: JC

PAGE: 2 of 4 DATE: 10/11/07

W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

MODEL:

18801 (Comprised of Models 18820 Control Unit & 18830 Motor Assembly)

SERIAL NUMBER:

CA01631

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

Nominal Motor Rpm	Output Frequency Hz (1)	Calculated Rpm (2)	Indicated Rpm (3)
600	320	600	600
1200	640	1200	1200
2400	1280	2400	2400
4200	2240	4200	4200
6,000	3200	6000	6000
8,100	4320	8100	8100
9,900	5280	9900	9900
Ø	☑ Clockwise and Counterclockwise rotation verified		

(1) (2) (3)	Measured at the optical encoder output. Frequency output produces 32 pulses per revolution of motor shaft. Indicated on the Control Unit LCD display. * Indicates out of tolerance						
X	No Calibratio	n Adjustments Required	☐ As Found	☐ As Left			
Tracea	able frequenc	y meter used in calibration	Model: <u>DP5740</u> S	SN: <u>4863</u>			
	f inspection tion Interval	15 Dec. 2014 One Year					
			Tested By	<u>EC</u>			

Filename: CP18801(A).doc

Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001

Cert. No.: 4000-5872220

Traceable® Certificate of Calibration for Digital Thermometer

Cust ID:Inquest Environmental Inc., 3609 Mojave Ct. Suite E, Attn. Mitchell Kunkel, Columbia, MO 65202 U.S.A. (RMA:986002) Instrument Identification:

Model Numbers: 15-077-8, FB50266, 245BY S/N: 221381404 Manufacturer: Control Company

Model: 15-077-7

S/N: 51202300

Standards/Equipment:

<u>Description</u>	Serial Number	Due Date	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		
Thermistor Module	A17118	2/24/15	1000351744
Temperature Probe	128	3/12/15	15-CJ73J-4-1
Temperature Calibration Bath TC-218	A73332		
Thermistor Module	A27129	10/25/14	1000346002
Temperature Probe	5202	11/30/14	15-B15PW-1-1
Temperature Calibration Bath TC-256	B01375		
Thermistor Module	A27129	10/25/14	1000346002
Temperature Probe	5267	10/19/15	15-CD5J7-1-1

Certificate Information:

Technician: 68

Procedure: CAL-06

Cal Date: 4/14/14

Cal Due: 4/14/15

Test Conditions:

22.5°C 50.0 %RH 1007 mBar

Calibration Data:

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C	0.000	0.106	N	0.000	-0.001	Υ	-0.050	0.050	0.013	3.8:1
•c	25.001	25.097	N	25.001	24.999	Y	24.951	25.051	0.023	2.2:1
°C	60.000	60.103	N	60.000	60.000	Υ	59.950	60.050	0.014	3.6:1
°C	100.004	100.082	N	100.004	99.997	Y	99.954	100.054	0.018	2.8:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 85% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tot=In Toterance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio, Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Toterance; Max = As Left Nominal(Rounded) + Toterance; Date=MM/DD/YY

Aid Rodriguez. Quality Manager

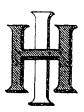
Aeron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Digital Thermometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Digital Thermometers change little if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company


CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750-01 Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company

ASS INSTRUMENT....

6711 OLD BRANCH AVENUE • CAMP SPRINGS, MD 20748-6990 a (301) 449-5454 • FAX (301) 449-5455

CALIBRATION REPORT

BAROMETER/ALTIMETER AIR Model AIR-HB-1A Serial No. 6G3745

TEST POINT	TEST PRESSURE	DIGITAL READOUT	READOUT ERROR	CORRECTION REQUIRED
1	930.00	931.9	+1.9	-1.9
2	970.00	971.9	+1.9	-1.9
3	1010.00	1012.0	+2.0	-2.0
4	1050.00	1051.9	+1.9	-1.9
5	1018.01	1019.9	+1.9	-1.9

NOTES:

- 1. All data are in Millibars (hPA) and were taken at 75 F (24 C).
- 2. To correct the Digital Readout of the instrument, either algebraically add the CORRECTION REQUIRED to, or algebraically subtract the READOUT ERROR from, the readout shown on the instrument.
- 3. The TEST PRESSURE was generated using Type A-1 Barometer S/N 3327, and was approached in an increasing-pressure direction.
- 4. The TEST PRESSURE for TEST POINT 5 was ambient atmospheric pressure.
- 5. The BAROMETER/ALTIMETER was horizontal during the calibration.
- 6. The LCD screen of the BAROMETER/ALTIMETER has some trash in the center of the display, but it does not interfer with the
- 7. Although the Digital Readout of the instrument can be adjusted to incorporate the average CORRECTION REQUIRED, this has not been done.

Calibration Date: 5 February 2014

Bernard I. Hass

(SEAL)